

Tetrahedron 59 (2003) 10287-10294

TETRAHEDRON

Synthesis of the tricyclic dihydrofuran moiety of azadirachtin: efficient transformation of the Claisen rearrangement intermediate into a functionalized tricyclic dihydrofuran core

Jun Ishihara,^{a,*} Yohei Ikuma,^b Susumi Hatakeyama,^a Takanori Suzuki^b and Akio Murai^b

^aGraduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan ^bDivision of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan

Received 28 August 2003; accepted 14 October 2003

Abstract—Azadirachtin is a *C-seco* limonoid, derived from the neem tree. Previously, we reported the synthesis of the right and left segments of azadirachtin, in addition to the coupling reaction of the modeled ester utilizing Claisen rearrangement. Herein we report the transformation of the modeled rearrangement product into a tricyclic dihydrofuran, which would be expected to have bioactivity against insects.

© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The higher plants have acquired chemical defence mechanisms against the attack of pathogens and insects. Tropical trees, especially, are known to have the highly elaborated chemical defence mechanisms, which have gradually been elucidated by recent progress of biochemistry.¹ Azadirachtin (1) is a *C-seco* limonoid, isolated in 1968 from the seeds of Indian neem tree, Azadirachta indica A. Juss (Fig. 1).² This natural product has shown strong bioactivity against insects, including repellent and antifeedant activities. Despite its high insect antifeedant activity, azadirachtin shows no apparent phytotoxicity and is remarkably non-toxic to higher animals. The structure and relative stereochemistry were clarified in 1985 by Kraus and Ley,³ and the absolute configuration was determined in 1992.⁴ Although several groups have reported synthetic studies on azadirachtin,⁵ total synthesis has not yet been achieved. The biological studies⁶ and structure-activity relationships⁷ of **1** have been investigated utilizing various derivatives. Ley and co-workers demonstrated that the stereochemistry at C-7 and the bridging oxygen substituent at C-6 are responsible for insect antifeedant activity using various derivatives and degradative compounds.⁸ Interestingly, they also showed that the tricyclic dihydrofuran moiety, the right wing moiety, had still rather potent antifeedant activity.⁹ Recently, conformational calculations have been carried out by Baldoni and co-workers in order to determine the structural characteristics responsible for the

* Corresponding author. Tel./fax: +81-95-819-2427;

e-mail: jishi@net.nagasaki-u.ac.jp

biological activity.¹⁰ In the course of our synthetic studies on **1**, we found that the coupling between the left and right moieties could be cleanly achieved by means of Claisen rearrangement of the corresponding ester.¹¹ We were therefore interested in the transformation of the modeled rearrangement product into the functionalized tricyclic

Figure 1.

Keywords: azadirachtin; Claisen rearrangement; deoxygenation.

dihydrofuran core of **1**, which would be expected to have bioactivity against insects.

2. Deoxygenation of hydroxyl group at neopentyl position

The Ireland–Claisen rearrangement of the modeled ester 2 readily proceeded to afford the carboxylic acid 3 in good yield as we previously reported (Scheme 1).¹² Methyl esterification of 3 and subsequent DIBAL-H reduction gave the alcohol 4. Since lactone functionality must be installed into the genuine substrate, sequential conversion of 3 to 4 (ClCO₂Et, Et₃N, THF, 0°C and then NaBH₄, MeOH, -60° C)¹³ would therefore be practically feasible. Compound 4a could be also prepared by similar method to 4.

Scheme 1. Synthesis of methyl compound 6. Reagents and conditions: (i) KHMDS, TMSCI/Et₃N, PhMe, $-78 \rightarrow 70^{\circ}$ C, 12 h (87%); (ii) CH₂N₂, Et₂O, 0°C, 30 min; (iii) DIBAL-H, CH₂Cl₂, -78° C, 1 h (~100% for 2 steps); (iv) Et₃N, ClCO₂Et, THF, 0°C, 40 min; (v) NaBH₄, MeOH, $-78 \rightarrow -60^{\circ}$ C, 19 h (4: 60% for 2 steps, recovered 3: 40%); (vi) LiHMDS, (Me₂N)₂P(O)Cl, THF, TMEDA, 23°C, 13 h (87%); (vii) Li naphthalenide, THF, 0 \rightarrow 23°C (44%); (viii) imidazole, PPh₃, I₂, PhH, 23°C, 4 h (93%); (ix) NaBH₄, DMSO, 100°C, 2 h (87%).

Deoxygenation of the hydroxyl group in **4** and **4a** seemed to be difficult due to its hindered neopentyl position. We initially attempted a Barton–McCombie type process via xanthates under various conditions.¹⁴ Disappointingly, treatment of the corresponding methyl dithiocarbonate, derived from **4a**, with AIBN/Ph₂SiH₂ or (PhCOO)₂/ Ph₂SiH₂¹⁵ furnished none of the desired products. In addition, Ph₂SiH₂-mediated radical reduction of the imidazoyl thiocarbonate also gave a complex mixture, presumably because the proximal *exo*-olefin reacted with the resulting primary radical. Alternatively, we tried alkaline metal reduction of phosphodiamidate (PON) in liquid ammonia, which is known to be amenable to the deoxygenation in complex molecules.¹⁶ Hence, introduction of a PON group into **4a** readily afforded compound **5a**. We then subjected **5a** to Benkeser and Birch reductions, respectively. However, both reductions resulted in predominant hydrogenation of the *exo*-olefin rather than the deoxygenation. The desired deoxygenation was eventually achieved when **5a** was treated with lithium naphthalenide in THF,¹⁷ resulting in **6a** in 44% yield. Meanwhile, exposure of **4** to MeP(OPh)₃I and NaBH₃CN in HMPA at 100°C¹⁸ afforded **6** in 29% yield at single step. This result showed that hydride reduction of the iodide could proceed smoothly in this substrate. Consequently, we were pleased to find that iodination of **4** to **5** and subsequent NaBH₄ reduction in DMSO at 100°C generated **6** in 81% yield.¹⁹

3. Transformation of exo-olefin into endo-olefin

Next we envisaged isomerization of the exo-olefin in 6 to the endo-olefin 7 (Scheme 2). Although application of allyl isomerization using transition metals is well documented, compound 6 resisted those reactions.²⁰ All attempts of isomerization of 6 in the presence of transition metals [RhCl(PPh₃)₃/*i*Pr₂NEt, PdCl₂(PhCN)₂, and RhCl₃·3H₂O] were unsuccessful, most of which resulted in quantitative recovery of 6. From these results it was postulated that the bulky DEIPS group inhibited the transition metal from approaching the allylic hydrogen to be reacted. These disappointing results led us to examine the allyl isomerization after removal of the DEIPS group. Crabtree catalyst $\{Ir(cod)[PCH_3(C_6H_5)_2]_2\}PF_{6}^{21}$ a cationic catalyst, was considered an alternative because it would be accessible from the α -side in **8** via its coordination to the hydroxyl group. Unfortunately, treatment of 8 with Crabtree catalyst furnished the saturated compound 9 in 40% yield, along with recovery of 8 in 60% yield. According to the stereochemistry at hydrogenated position in 9, the catalyst apparently was able to coordinate to the hydroxyl group at α -side however was unable to cause the isomerization.

Scheme 2. Attempted reactions for allyl isomerization. *Reagents and conditions*: (i) Bu_4NF , THF, 0°C, 40 min (100%); (ii) { $lr(cod)[PCH_3(C_6-H_5)_2]_2$ }PF₆, THF, 40°C (40%, **8**: 60%).

Recently, Ley demonstrated that the primary radical **10a** was predominantly captured by hydrogen radical over the tertiary radical **10b** owing to the steric hindrance (Fig. 2).^{5k} This result prompted us to attempt the isomerization by radical reaction. Breslow and Baldwin have developed the

ingenious remote oxidations, which were controlled by remote functionalities excited by photo-irradiation.²² It was therefore hoped that the α -bromobenzoate group in **11** or the α -bromobenzyl group in **12** could serve as a remote functionality to induce the allyl radical preferentially. Unfortunately, these methodologies concluded unsatisfactorily to give compounds **13** and **14**, respectively.

All other attempts of allylic isomerization (PhSO₂NSO,²³ NBS/ $h\nu$ NIS/iPr₂NEt or SeO₂) for **6** were unsuccessful.

In this event, we found an alternative route for the transformation of the *exo*-olefin to the *endo*-olefin (Scheme 3). This route commenced with the epoxidation of **6** with *m*CPBA affording **15** exclusively in 90% yield,²⁴ followed by treatment with BF₃·OEt₂ at -55° C to give a mixture of aldehydes **16** (3.1:1) in 78% yield. When we performed the bromination at α -position of the aldehyde with KHMDS, HMPA and NBS in THF at -60° C, the bromide **17** was obtained in 71% yield. Fortunately, the elimination of the bromide with LiBr and Li₂CO₃ in DMF proceeded smoothly to generate the α , β -unsaturated aldehyde **18** in 97% yield.²⁵

Having established a procedure for the transformation of *exo*-olefin into *endo*-olefin, we turned our attention towards the final part of the synthesis. Luche reduction²⁶ of **19** with NaBH₄, CeCl₃·7H₂O in MeOH, followed by epoxidation

Scheme 3. Synthesis of *endo*-olefin compound. *Reagents and conditions*: (i) *m*CPBA, NaHCO₃, CH₂Cl₂, 23°C, 18 h (90%); (ii) BF₃·Et₂O, CH₂Cl₂, -55°C, 7 h (78%) (α:β=3;1); (iii) KHMDS, HMPA, THF, -55°C, 20 min then NBS, 2 h (71%); (iv) LiBr, Li₂CO₃, DMF, 125°C, 13 h (97%); (v) NaBH₄, CeCl₃·7H₂O, MeOH, 0°C, 1 h (78%); (vi) VO(acac)₂, TBHP, CH₂Cl₂, 23°C, 3.5 h (100%); (vii) 1₂, PPh₃, Imidazole, THF 23°C, 8 h (82%); (viii) NaBH₄, MeCN, reflux, 18 h (88%); (ix) PhSeH, Amberlyst-15, MS-4A, CH₃CN, 25°C, 30 min; (x) H₂O₂, Py, CH₂Cl₂, 0°C, 30 min (recovered **22**: 22%); (xi) Bu₄NF, THF, 0°C, 10 min (19% for 3 steps).

with VO(acac)₂, TBHP afforded the epoxide **20** exclusively in a good yield. The stereochemistry of the epoxide could be confirmed by NOESY spectra of 20. It was postulated that the reagent was accessible to the less hindered β -side of the tricyclic molecule, thus generating the desired selectivity. The second deoxygenation was performed under the similar conditions to those described for 5. Treatment of 20 with I_2 , Ph₃P and imidazole furnished iodide 21 which after subsequent NaBH₄ reduction in CH₃CN successfully afforded 22 in 88% yield. It should be noted that the epoxide was intact under the reduction conditions. The transformation of 22 into dihydrofuran was accomplished by Ley's procedure.²⁷ Selenylation of 22 and oxidation formed the dihydrofuran, which was followed by removal of DEIPS with Bu₄NF to give the desired tricyclic dihydrofuran 23 in 19% yield for 3 steps, accompanied by recovery of 22 in 22% yield.

4. Conclusion

The Claisen rearrangement product **3** was converted into the deoxygenated compound **6** via sequential iodination and NaBH₄ reduction in good yield. Although direct isomerization of the *exo*-olefin of **6** to the *endo*-olefin was fruitless, an alternative route involving transformation of **6** into the α , β -aldehyde **18** could be established. The aldehyde **18** was

converted into the desired tricyclic dihydrofuran 23 via selective epoxidation and deoxygenation. Consequently, we have developed an efficient method for the transformation of the rearranged product into the tricyclic dihydrofuran. The biological activity of 23 thus prepared is under investigation.

5. Experimental

5.1. General information

Solvents and reagents were dried and distilled before use. Tetrahydrofuran (THF) and toluene (PhMe) were distilled from sodium benzophenone ketyl. CH₂Cl₂, pyridine, and Et₃N were distilled from CaH₂. DMSO was distilled under reduced pressure from CaH₂. EtOH and MeOH were distilled from their magnesium alkoxides. Normal reagentgrade solvents were used for flash chromatography and extraction. All reactions were monitored by TLC with precoated Silica gel plates (Merck, silica gel 60 F₂₅₄ 1.05715.25). Visualization was achieved via UV light, a 5.6% ethanolic *p*-anisaldehyde solution containing 5.6% of concentrated H₂SO₄-heat, and 10% ethanolic phosphomolybdic acid solution-heat. For flash chromatography was utilized Silica gel (YMG, silica gel SIL-60-400/230W or Kanto Kagaku, silica gel 60N, spherical neutral, 37563-84). Melting points were measured in open capillary tubes and are uncorrected. IR spectra were obtained on a Hitachi model 270-30 and JASCO model FT/IR-230 infrared spectrophotometer in neat state. The ¹H NMR spectra were recorded on a JEOL model AL-300 (300 MHz), α-400 (400 MHz) and a VARIAN model Gemini 300 (300 MHz) spectrometers in CDCl₃. The ¹³C NMR spectra were measured on a VARIAN Gemini 300 (75 MHz), Unity plus 500 (125 MHz) and spectrometer in CDCl₃. Chemical shifts (δ) were reported with tetramethylsilane $(\delta = 0.00 \text{ ppm})$ or CHCl₃ ($\delta = 7.26 \text{ ppm}$) as internal standards. Splitting patterns were designated as 's, d, t, q, m, and br'; indicating 'singlet, doublet, triplet, quartet, multiplet, and broad,' respectively. Optical rotations were recorded on JASCO model DIP-370 and P-1020 digital polarimeters using CHCl₃ as a solvent. High-resolution mass spectra were obtained on a JEOL model JMS-HX-110 and JMS-DX303 mass spectrometer under EI condition. All reactions were carried out under anhydrous conditions and argon atmosphere, unless otherwise noted.

5.1.1. Cyclohexanecarboxylic acid (1R,2S,4S,6R,8S)-2-(diethylisopropylsilyloxy)-4-methoxy-5,7-dioxatricyclo[6.2.1.0^{2,6}]undec-9-en-10-ylmethyl ester (2). To a mixture of EDCI·HCl (1.66 g, 8.66 mmol) and DMAP (1.02 g, 7.31 mmol) in CH₂Cl₂ (10 mL) was added cyclohexanecarboxylic acid (937 mg, 7.31 mmol) at 0°C. After stirring for 15 min, a solution of allyl alcohol (1.19 g, 3.34 mmol) in CH₂Cl₂ (10 mL) was added dropwise and stirring was continued at 23°C for 2 h. The mixture was diluted with sat. NH₄Cl (30 mL), and the aqueous layer was extracted with Et₂O (3×30 mL). The combined organic extracts were dried over MgSO₄, filtered, and concentrated in vacuo. The residue was subjected to flash chromatography (silica gel 50 g, hexane:EtOAc, 10:1 to 6:1) to afford 2 (1.43 g, 3.06 mmol, 92%) as a colorless oil; $[\alpha]_{D}^{26} = +70.2$ (c 2.27, CHCl₃); $\nu_{\rm max}$ (cm⁻¹) (neat) 2935, 2863, 1737, 1452, 1365, 1315, 1274, 1247, 1195, 1166, 1132, 1101, 1074, 1029, 962, 937, 881, 844, 761, 727, 665; $\delta_{\rm H}$ (300 MHz, CDCl₃) 5.95 (1H, brd, *J*=2.4 Hz), 5.31 (1H, dd, *J*=3.9, 5.9 Hz), 4.92 (1H, s), 4.86 (1H, d, *J*=1.7 Hz), 4.80 (1H, d, *J*=1.9 Hz), 4.63 (1H, br s), 3.44 (3H, s), 2.90 (1H, brd, *J*=5.0 Hz), 2.39–2.29 (1H, m), 2.35 (1H, dd, *J*=5.9, 15.2 Hz), 2.29 (1H, dd, *J*=3.9, 15.2 Hz), 2.12 (1H, brd, *J*=11.6 Hz), 1.92–1.85 (1H, m), 2.05–1.24 (10H, m), 1.00–0.89 (13H, m), 0.70–0.61 (4H, m); EI-MS-LR *m*/*z* (Int.%), 466 (M⁺, 7), 437 (M⁺–Et, 3), 423 (M⁺–*i*Pr, 12), 389 (64), 338 (68), 293 (49); EI-MS-HR, calcd for C₂₂H₃₅O₆Si (M⁺–*i*Pr): 423.2203, found 423.2200.

5.1.2. (1R,2S,4S,6R,8S)-1-{2-(Diethylisopropylsilyloxy)-4-methoxy-10-methylene-5,7-dioxatricyclo[6.2.1.0^{2,6}]undec-9-yl}-cyclohexanecarboxylic acid (3). To a solution of 2 (367 mg, 0.79 mmol) in PhMe (7 mL) was added a solution of KHMDS (0.5 M in PhMe, 6.3 mL, 3.15 mmol) at -78°C and the mixture was stirred at -78°C for 1 h. A mixture of TMSCl (2.5 mL, 19.7 mmol) and Et₃N (2.5 mL, 17.9 mmol) in PhMe (2.5 mL) was centrifuged at 2000 rpm for 5 min and the supernatant (3.0 mL) was added to the reaction mixture at -78° C. The stirring mixture was warmed gradually to 70° C over 3 h and stirring was continued at the same temperature for an additional 11 h. The solution was cooled to the ambient temperature, and the reaction was diluted with sat. NH₄Cl (10 mL) at 0°C. The mixture was adjusted to pH 3 by 2 M HCl, and the aqueous layer was extracted with Et₂O (2×15 mL). Drying over MgSO₄, concentration, and flash chromatography (silica gel 13 g, hexane:EtOAc, 6:1) afforded 3 (264 mg, 0.57 mmol, 72%) as a white amorphous; $[\alpha]_{D}^{26} = +22.5$ (c 1.01, CHCl₃); $\nu_{\rm max}$ (cm⁻¹) (neat) 3095, 2937, 2875, 1727, 1699, 1461, 1454, 1413, 1380, 1322, 1284, 1270, 1240, 1191, 1170, 1132, 1081, 1037, 1012, 966, 937, 898, 881, 761, 725, 665; $\delta_{\rm H}$ (300 MHz, CDCl₃) 5.30 (1H, dd, J=4.0, 6.2 Hz), 5.26 (1H, br s), 5.18 (1H, br s), 4.91 (1H, s), 4.48 (1H, br s), 3.43 (3H, s), 2.87 (1H, br s), 2.77 (1H, brd, J=5.0 Hz), 2.33 (1H, dd, J=4.0, 15.0 Hz), 2.25 (1H, dd, J=6.2, 15.0 Hz), 2.14 (1H, brd, J=10.6 Hz), 2.05-2.02 (2H, m), 1.62 (4H, m), 1.48-1.15 (5H, m), 1.00-0.89 (13H, m), 0.68-0.60 (4H, m); EI-MS-LR *m/z* (Int.%), 437 (M⁺-Et, 9), 423 (M⁺-*i*Pr, 100), 391 (36), 293 (76); EI-MS-HR, calcd for C₂₂H₃₅O₆Si $(M^+ - iPr)$: 423.2203, found: 423.2205.

5.1.3. {1-[(1R,2S,4S,6R,8S)-2-Diethylisopropylsilyloxy-4methoxy-10-methylene-5,7-dioxatricyclo[6.2.1.0^{2,6}]undec-9-yl]-cyclohexyl}-methanol (4). To a solution of 3 (13.8 mg, 29.6 µmol) in THF (0.5 mL) were added Et₃N (8.3 μ L, 59.6 μ mol) and ethyl chloroformate (5.7 μ L, 59.6 µmol) at 0°C, and the mixture was stirred at 0°C for 40 min. The mixture was diluted with MeOH (0.2 mL), and $NaBH_4$ (7.8 mg, 206 μ mol) was then added to the reaction mixture at -78° C. The solution was stirred at -78° C for 20 h, at -70° C for 46.5 h, and then at -60° C for 19 h. To the mixture was added 0.5 M HCl (2 mL), and the aqueous layer was extracted with Et₂O (3×3 mL). The combined organic extracts were dried over MgSO4, filtered, and concentrated in vacuo. The residue was subjected to flash chromatography (silica gel, 3 g, hexane:EtOAc, 5:1) to afford 4 (8.1 mg, 17.8 μ mol, 60%) as a pale yellow oil, along with carboxylic acid 3 (5.5 mg, 11.8 µmol, 40%). 4;

5.1.4. 1-{(1R,2S,4S,6R,8S)-2-Diethylisopropylsilyloxy-4methoxy-10-methylene-5,7-dioxatricyclo[6.2.1.0^{2,6}]undec-9-yl}-1-iodomethyl-cyclohexane (5). To a solution of alcohol 4 (989 mg, 2.06 mmol) in PhH (10 mL) were added imidazole (750 mg, 11.0 mmol), PPh3 (2.74 g, 10.4 mmol), and a solution of I_2 (2.60 g, 10.2 mmol) in PhH (8 mL). After stirring at 23°C for 11 h, the reaction was diluted with ether and sat. NaHCO₃ (5 mL). To the mixture was added a solution of I₂ in PhH until the solution persisted in yellow-brown color. After addition of sat. Na₂S₂O₃ (20 mL), the mixture was extracted with ether $(3 \times 25 \text{ mL})$, dried over MgSO₄, and concentrated. The residue was subjected to flash chromatography (silica gel, 30 g, hexane:EtOAc, 8:1) to furnish iodide 5 (1.08 g, 1.92 mmol, 93%) as a pale yellow amorphous; $[\alpha]_D^{26} = +64.4$ (c 0.67, CHCl₃); ν_{max} (cm⁻¹) (neat) 2931, 2865, 1460, 1376, 1237, 1190, 1167, 1132, 1105, 1080, 1069, 1037, 966, 937, 881, 758, 722, 665, 603; $\delta_{\rm H}$ (300 MHz, CDCl₃), 5.30 (1H, dd, J=4.2, 6.1 Hz), 5.29 (1H, br s), 5.25 (1H, br s), 4.94 (1H, s), 4.44 (1H, br s), 3.52 (1H, d, J=10.5 Hz), 3.44 (3H, s), 3.42 (1H, d, J=10.5 Hz), 2.85 (1H, br s), 2.76 (1H, brd, J=5.5 Hz), 2.34 (1H, dd, J=4.2, 14.9 Hz), 2.24 (1H, dd, J=6.1, 14.9 Hz), 2.04 (1H, brd, J=12.8 Hz), 1.68–1.17 (11H, m), 1.01–0.85 (13H, m), 0.69-0.61 (4H, m); EI-MS-LR m/z (Int.%) 533 (M⁺-Et, 3), 519 (M⁺-*i*Pr, 70), 487 (27), 437 (31), 293 (100); EI-MS-HR, calcd for $C_{22}H_{36}O_4ISi$ (M⁺-*i*Pr): 519.1428; found: 519.1425.

5.1.5. 1-{(1R,2S,4S,6R,8S)-2-Diethylisopropylsilyloxy-4methoxy-10-methylene-5,7-dioxatricyclo[6.2.1.0^{2,6}]undec-9-yl}-1-methylcyclohexane (6). To a solution of 5 (4.8 mg, 8.5 µmol) in DMSO (0.5 mL) was added NaBH₄ (ca. 10 mg, excess) at 23°C, and the mixture was stirred at 100°C for 2 h. The mixture was diluted with 0.5 M HCl (2.0 mL), and the aqueous layer was extracted with Et₂O (3×3 mL). The combined organic extracts were dried over MgSO₄, filtered, and concentrated in vacuo. The residue was subjected to flash chromatography (silica gel, 0.8 g, hexane:EtOAc, 15:1) to afford 6 (3.2 mg, 7.4 µmol, 87%) as a colorless oil; $[\alpha]_D^{25} = +38.6$ (*c* 0.35, CHCl₃); ν_{max} (cm⁻¹) (neat) 2929, 2864, 1462, 1414, 1376, 1322, 1299, 1284, 1270, 1239, 1189, 1168, 1132, 1105, 1077, 1037, 1015, 966, 940, 912, 882, 858, 761, 731, 665, 647, 576; δ_H (300 MHz, CDCl₃) 5.30 (1H, dd, J=4.0, 6.2 Hz), 5.23 (1H, br s), 5.18 (1H, br s), 4.91 (1H, s), 4.43 (1H, br s), 3.44 (3H, s), 2.74 (1H, d, J=5.7 Hz), 2.62 (1H, br s), 2.35 (1H, dd, J=4.0, 14.9 Hz), 2.24 (1H, dd, J=6.2, 14.9 Hz), 2.00 (1H, brd, J=12.7 Hz), 1.64 (1H, ddd, J=2.7, 5.7, 12.7 Hz), 1.55–1.25 (10H, m), 1.00-0.92 (13H, m), 0.81 (3H, s), 0.69-0.60 (4H, m); EI-MS-LR m/z (Int.%) 436 (M⁺, 0.7), 393 (M⁺-iPr, 88), 361 (38), 293 (100), 265 (47); EI-MS-HR, calcd for C₂₅H₄₄O₄Si (M⁺): 436.3009, found: 436.3008.

5.1.6. 1-{(1*R*,2*S*,4*S*,6*R*,8*S*,10*R*)-2-Diethylisopropylsilyloxy-4-methoxy-10-methylene-5,7-dioxa-10-oxiranespiro-tricyclo[6.2.1.0^{2,6}]undec-9-yl}-1-methylcyclohexane (15). To a stirred mixture of 6 (8.9 mg, 20.4 µmol) CH_2Cl_2 (1 mL) were added mCPBA (10.5 mg, in 0.0608 mmol) and NaHCO₃ (12.0 mg, 0.143 mmol) at 0°C, and the mixture was stirred at 23°C for 18 h. The reaction mixture was diluted with sat. Na₂S₂O₃ (2 mL) and sat. NaHCO₃ (2 mL) and the aqueous layer was extracted with ether $(3 \times 5 \text{ mL})$. Drying over MgSO₄, concentration, and flash chromatography (silica gel, 1.5 g, hexane:EtOAc, 8:1) afforded 15 (8.3 mg, 18.4 µmol, 90%) as a colorless oil; $[\alpha]_D^{23} = +103$ (c 0.06, CHCl₃); ν_{max} (cm⁻¹) (neat) 2929, 1776, 1731, 1457, 1376, 1317, 1191, 1128, 1079, 1039, 968, 935, 852, 727; $\delta_{\rm H}$ (300 MHz, CDCl₃) 5.28 (1H, dd, J=4.1, 5.8 Hz), 5.14 (1H, s), 4.46 (1H, br s), 3.43 (3H, s), 3.08 (1H, d, J=4.7 Hz), 2.88 (1H, d, J=4.7 Hz), 2.36 (1H, br s), 2.34 (1H, dd, J=4.1, 14.7 Hz), 2.25 (1H, dd, J=5.8, 14.7 Hz), 2.04 (1H, brd, J=12.6 Hz), 1.94 (1H, brd, J=5.2 Hz), 1.89 (1H, m), 1.57–1.21 (10H, m), 1.07–0.88 (16H, m), 0.70-0.64 (4H, m); EI-MS-LR m/z (Int. %) 421 (7), 409 (M⁺ -iPr, 17), 377 (43), 355 (66), 281 (42); EI-MS-HR, calcd for $C_{22}H_{37}O_5Si$ (M⁺-*i*Pr): 409.2410, found: 409.2406.

5.1.7. (1*R*,2*S*,4*S*,6*R*,8*S*,10*R*)-10-Bromo-2-(diethylisopropylsilyloxy)-4-methoxy-9-(1-methylcyclohexyl)-5,7dioxatricyclo[6.2.1.0^{2,6}]undecane-10-carbaldehyde (17). To a solution of 15 (43.5 mg, 96.1 µmol) in CH₂Cl₂ (1.5 mL) was added dropwise BF₃·OEt₂ (61 µL, 0.481 mmol) at -55° C. After stirring for 7 h, the mixture was diluted with sat. NaHCO₃ (2 mL), and the aqueous layer was extracted with Et₂O (4×2 mL). The combined organic extracts were dried over MgSO₄, filtered, and concentrated in vacuo. The residue was subjected to flash chromatography (silica gel, 5.0 g, hexane:EtOAc, 10:1 to 6:1) to afford a diastereomixture (α : β =3.1:1) of 16 (34.1 mg, 75.0 µmol, 78%) as a colorless oil.

To a mixture of 16 (19.1 mg, 42.2 µmol) and HMPA (51.4 µl, 0.295 mmol) in THF (0.5 mL) was added dropwise a solution of KHMDS (0.5 M in PhMe, 0.26 mL, 0.128 mmol) at -60° C. After stirring for 20 min, a solution of NBS (51.2 mg, 0.288 mmol) in THF (0.8 mL) was added and stirring was continued at the same temperature for 2 h. The reaction was diluted with sat. NH₄Cl (2 mL) and sat. $Na_2S_2O_3$ (2 mL), and the aqueous layer was extracted with Et₂O (4×5 mL). Drying over MgSO₄, concentration, and flash chromatography (silica gel, 3.0 g, hexane:EtOAc, 8:1) afforded 17 (15.8 mg, 30.0 µmol, 71%) as a colorless oil; $[\alpha]_D^{23} = -8.05$ (c 0.174, CHCl₃); ν_{max} (cm⁻¹) (neat) 2935, 2875, 1722, 1455, 1376, 1189, 1126, 1037, 725; $\delta_{\rm H}$ (300 MHz, CDCl₃) 9.55 (1H, s), 5.24 (1H, t, J=4.8 Hz), 4.96 (1H, s), 4.45 (1H, br s), 3.41 (3H, s), 3.25 (1H, br s), 2.96 (1H, br s), 2.33 (1H, brd, J=4.7 Hz), 2.23 (2H, br s), 1.56-1.19 (11H, m), 1.05-0.94 (16H, m), 0.73-0.66 (4H, m); EI-MS-LR *m*/*z* (Int. %) 501 (M⁺-Et, 7), 487 (M⁺-*i*Pr, 8), 457 (100), 409 (64), 393 (63); EI-MS-HR, calcd for $C_{22}H_{36}O_5SiBr (M^+ - iPr): 487.1515$, found: 487.1514.

5.1.8. (1R,2S,4S,6R,8S,10R)-2-(Diethylisopropylsilyloxy)-4-methoxy-9-(1-methylcyclohexyl)-5,7-dioxatricyclo[6.2.1.0^{2,6}]undec-9-ene-10-carbaldehyde (18). To a solution of 17 (24.6 mg, 46.3 µmol) in DMF (1.0 mL) were added LiBr (42.7 mg, 0.492 mmol) and Li₂CO₃ (35.2 mg, 0.476 mmol) at 23°C, and the mixture was stirred at 125°C for 13 h. The mixture was diluted with brine (2.0 mL), and the aqueous layer was extracted with Et_2O (4×2 mL). The combined organic extracts were dried over MgSO₄, filtered, and concentrated in vacuo. The residue was subjected to flash chromatography (silica gel, 1.2 g, hexane:EtOAc, 8:1) to afford 18 (20.2 mg, 44.9 µmol, 97%) as a pale yellow oil; $[\alpha]_D^{23} = +97.1$ (c 0.63, CHCl₃); ν_{max} (cm⁻¹) (neat) 2931, 2865, 1670, 1454, 1187, 1130, 1076, 1029, 723; $\delta_{\rm H}$ (300 MHz, CDCl₃) 10.36 (1H, s), 5.31 (1H, dd, J=3.3, 6.3 Hz), 4.94 (1H, s), 4.87 (1H, br s), 3.59 (1H, d, J=5.2 Hz), 3.45 (3H, s), 2.40 (1H, dd, J=6.3, 15.1 Hz), 2.30 (1H, dd, J=3.3, 15.1 Hz), 2.09 (1H, d, J=11.8 Hz), 1.94-1.87 (2H, m), 1.77 (1H, ddd, J=3.0, 5.2, 11.8 Hz), 1.66-1.23 (8H, m), 1.30 (3H, s), 1.03-0.84 (13H, m), 0.67-0.57 (4H, m); EI-MS-LR m/z (Int.%) 450 (M⁺, 1.0), 421 (M⁺-Et, 80), 407 (M⁺-*i*Pr, 17), 375 (55); EI-MS-HR, calcd for C₂₅H₄₂O₅Si (M⁺): 450.2801, found: 450.2813.

5.1.9. {(1R,2S,4S,6R,8S,10R)-2-(Diethylisopropylsilyloxy)-4-methoxy-9-(1-methylcyclohexyl)-5,7-dioxa-tricyclo[6.2.1.0^{2,6}]undec-9-en-10-yl}-methanol (19). To a solution of 18 (11.6 mg, 25.7 µmol) in MeOH (1 mL) were added CeCl₃·7H₂O (55 mg, 0.148 mmol) and NaBH₄ (5.6 mg, 0.148 mmol) at 0°C. After stirring at 0°C for 1 h, the mixture was diluted with sat. NaHCO₃ (1 mL) and brine (1 mL). The aqueous layer was extracted with ether (3×2 mL), dried over MgSO₄, and concentrated. The residue was subjected to flash chromatography (silica gel, 1.5 g, hexane:EtOAc, 8:1) to furnish **19** (9.0 mg, 20.0 µmol, 78%) as a pale yellow oil; $[\alpha]_{D}^{25} = +55.1$ (c 0.45, CHCl₃); $\nu_{\rm max}$ (cm⁻¹) (neat) 3486, 2929, 2865, 1457, 1191, 1126, 1072, 1024, 979, 723; δ_H (C₆D₆, 300 MHz) 5.27 (1H, s), 5.23 (1H, dd, J=2.5, 6.3 Hz), 4.64 (1H, br s), 4.59 (1H, d, J=14.3 Hz), 4.37 (1H, d, J=14.3 Hz), 3.36 (3H, s), 3.19 (1H, d, J=4.9 Hz), 2.30 (1H, dd, J=2.2, 15.4 Hz), 2.18 (1H, dd, J=6.3, 15.4 Hz), 2.17 (1H, d, J=11.5 Hz), 1.84-1.64 (2H, m), 1.60 (1H, ddd, J=3.3, 4.9, 11.5 Hz), 1.37-1.13 (8H, m), 1.10 (3H, s), 1.05-0.83 (13H, m), 0.79-0.57 (4H, m); EI-MS-LR m/z (Int.%) 452 (M⁺, 6.9), 421 (M⁺-OMe, 25), 377 (100), 359 (50), 346 (64); EI-MS-HR, calcd for C₂₅H₄₄O₅Si (M⁺): 452.2958, found: 452.2936.

5.1.10. {(1S,3R,5S,7S,8R,9R,11R)-7-(Diethylisopropylsilyloxy)-5-methoxy-11-(1-methylcyclohexyl)-2,4,10trioxa-tetracyclo[6.3.1.0^{3,7}0^{9,11}]dodec-9-yl}-methanol (20). To a solution of 19 (5.7 mg, 12.6 µmol) in CH₂Cl₂ (1.0 mL) were added VO(acac)₂ (1.0 mg, 3.77 mmol) and a solution of TBHP (3.05 M in CH₂Cl₂, 43 µl, 131 µmol) at 0°C, and the mixture was stirred at 23°C for 3.5 h. The mixture was diluted with sat. Na₂S₂O₃ (2 mL), and the aqueous layer was extracted with Et₂O (3×2 mL). Drying over MgSO₄, concentration, and flash chromatography (silica gel, 1.2 g, hexane:EtOAc, 8:1) afforded 20 (12.6 µmol, 100%) as a colorless oil; $[\alpha]_D^{24}$ =+22.4 (*c* 0.25, CHCl₃); ν_{max} (cm⁻¹) (neat) 3494, 2935, 2867, 1457, 1373, 1317, 1241, 1195, 1126, 1083, 1033, 958, 887, 765, 723; $\delta_{\rm H}$ (300 MHz, CDCl₃) 5.33 (1H, s), 5.27 (1H, dd, $J=3.0, 6.3 \text{ Hz}), 4.56 (1\text{H, br s}), 4.31 (1\text{H, dd, } J=7.4, 12.4 \text{ Hz}), 4.02 (1\text{H, dd, } J=6.0, 12.4 \text{ Hz}), 3.41 (3\text{H, s}), 2.90 (1\text{H, d, } J=5.2 \text{ Hz}), 2.58 (1\text{H, m}), 2.44 (1\text{H, dd, } J=6.3, 15.4 \text{ Hz}), 2.36 (1\text{H, dd, } J=3.0, 15.4 \text{ Hz}), 1.73-1.43 (12\text{H, m}), 1.23 (3\text{H, s}), 1.06-0.88 (13\text{H, m}), 0.79-0.69 (4\text{H, m}); \delta_{\rm C} (75 \text{ MHz, CDCl}_3) 129.0, 108.0, 106.7, 68.0, 62.3, 62.1, 46.4, 45.3, 29.7, 26.4, 25.9, 22.0, 17.6, 17.5, 17.3, 14.1, 7.3, 7.1, 4.8, 4.7; EI-MS-LR$ *m*/*z*(Int.%) 468 (M⁺, 1.9), 425 (M⁺-*i*Pr, 10), 393 (39), 244 (78); EI-MS-HR, calcd for C₂₅H₄₄O₆Si (M⁺): 468.2907, found: 468.2916.

5.1.11. (1S.3R,5S,7S,8R,9R,11R)-7-(Diethylisopropylsilyloxy)-9-iodomethyl-5-methoxy-11-(1-methylcyclohexyl)-2,4,10-trioxatetracyclo[6.3.1.0^{3,7}0^{9,11}]dodecane (21). To a solution of alcohol 20 (6.2 mg, 13.2 µmol) in THF (0.5 mL) were added imidazole (28.0 mg, 0.411 mmol), PPh₃ (53.0 mg, 0.202 mmol) and a solution of I_2 (51.0 mg, 1.0 mg)201 µmol) in THF (0.5 mL). After stirring at 23°C for 8 h, the reaction was diluted with sat. NaHCO₃ (1 mL) at 0°C. To the mixture was added a solution of I₂ in THF until the solution persisted in yellow-brown color. After addition of sat. $Na_2S_2O_3$ (20 mL) at 0°C, the aqueous layer was extracted with ether (4×2 mL), dried over MgSO₄, and concentrated. The residue was subjected to flash chromatography (silica gel, 1.5 g, hexane:EtOAc, 10:1) to furnish iodide 21 (6.2 mg, 10.8μ mol, 82%) as white solids; $[\alpha]_D^{23} = +12.5$ (c 0.30, CHCl₃); ν_{max} (cm⁻¹) (neat) 2929, 2863, 1457, 1373, 1315, 1247, 1195, 1124, 1085, 883, 767, 723; $\delta_{\rm H}$ (300 MHz, CDCl₃) 5.28 (1H, s), 5.25 (1H, dd, J=2.7, 6.3 Hz), 4.63 (1H, br s), 4.43 (1H, d, J=9.6 Hz), 3.77 (1H, d, J=9.6 Hz), 3.40 (3H, s), 2.90 (1H, brd, J=5.2 Hz), 2.42 (1H, dd, J=6.3, 15.7 Hz), 2.32 (1H, dd, J=2.7, 15.7 Hz), 1.77-1.34 (12H, m), 1.25 (3H, s), 1.06-0.83 (13H, m), 0.80–0.64 (4H, m); EI-MS-LR m/z (Int. %) 547 (M⁺-OMe, 8.7), 534 (21), 451 (100); EI-MS-HR, calcd for C₂₄H₄₀O₄SiI (M⁺-OMe): 547.1741, found: 547.1729.

5.1.12. (1S,3R,5S,7S,8R,9R,11R)-7-(Diethylisopropylsilyloxy)-9-methyl-5-methoxy-11-(1-methylcyclohexyl)-2,4,10-trioxatetracyclo[6.3.1.0^{3,7}0^{9,11}]dodecane (22). To a solution of 21 (3.2 mg, 5.5 µmol) in CH₃CN (1.0 mL) was added NaBH₄ (6.1 mg, 0.161 mmol) at 0°C, and the mixture was refluxed for 18 h. The reaction was diluted with brine (2 mL), and the aqueous layer was extracted with Et₂O (3×2 mL). Drying over MgSO₄, concentration, and flash chromatography (silica gel, 1.5 g, hexane:EtOAc, 10:1) furnished 22 (2.2 mg, 4.9 µmol, 88%) as a colorless oil; $[\alpha]_D^{26} = +17.3$ (c 0.11, CHCl₃); ν_{max} (cm⁻¹) (neat) 2927, 2865, 1457, 1371, 1267, 1193, 1126, 1079, 1033, 964, 723; δ_H (300 MHz, CDCl₃) 5.29 (1H, s), 5.26 (1H, dd, J=3.6, 5.8 Hz), 4.52 (1H, br s), 3.41 (3H, s), 2.43 (1H, brd, J=4.7 Hz), 2.34 (1H, brd, J=5.8 Hz), 2.33 (1H, brd, J=3.6 Hz), 1.77 (3H, s), 1.70–1.43 (12H, m), 1.23 (3H, s), 1.03–0.95 (13H, m), 0.74–0.68 (4H, m); EI-MS-LR m/z (Int.%) 452 (M^+ , 2.5), 421 (M^+ –OMe, 2.0), 409 (M^+ –*i*Pr, 3.4), 377 (4.6), 263 (100); EI-MS-HR, calcd for C₂₅H₄₄O₅Si (M⁺): 452.2958, found: 452.2966.

5.1.13. (15,35,75,85,95,115)-7-Hydroxy-9-methyl-11-(1methylcyclohexyl)-2,4,10-trioxatetracyclo[6.3.1.0^{3,7} $0^{9,11}$]dodec-5-ene (23). To a mixture of 22 (6.5 mg, 14.4 µmol) and MS4A (ca. 20 mg) in CH₃CN (1 mL) was added dropwise PhSeH (30.5 µl, 287 µmol) at 23°C. Amberlyst 15 was added and the mixture was stirred at 23° C for 30 min. After filtration through Celite and NaHCO₃, the filtrate and washings were concentrated in vacuo to afford a crude selenide. The crude selenide was used for next reaction without further purification.

To a solution of crude selenyl compound in CH_2Cl_2 (1.0 mL) were added dropwise 35% H_2O_2 (5 drops) and pyridine (5 drops) at 0°C, and the mixture was stirred for 30 min. To the solution was added dropwise sat. Na₂S₂O₃ (2 mL), and the aqueous layer was extracted with Et₂O (2×3 mL). The combined organic extracts were dried over MgSO₄, filtered, and concentrated in vacuo. The residue was subjected to flash chromatography (silica gel, 1.2 g, hexane:EtOAc, 10:1 to 5:1) to afford a crude dihydrofuran (1.6 mg), along with recovered **22** (1.4 mg, 3.1 µmol) in 22% yield.

To a solution of the dihydrofuran (1.6 mg) in THF (1 mL) was added dropwise a solution of TBAF (1.0 M in THF, 11.4 µl, 11.4 µmol) at 0°C. After stirring for 10 min, the mixture was diluted with sat. NH₄Cl (2.0 mL), and the aqueous layer was extracted with Et_2O (2×3 mL). The residue was subjected to flash chromatography (silica gel, 1.5 g, hexane: EtOAc, 10:1 to 4:1) to furnish 23 (0.8 mg, 2.7 μ mol, 19% for 3 steps) as white solids; $[\alpha]_D^{25} = -112$ (c 0.04, CHCl₃); ν_{max} (cm⁻¹) (neat) 3442, 2925, 2856, 1698, 1617, 1523, 1459, 1018, 773; δ_{H} (300 MHz, CDCl₃) 6.49 (1H, d, J=2.7 Hz), 5.51 (1H, s), 5.15 (1H, d, J=2.7 Hz), 4.48 (1H, d, J=3.6 Hz), 2.39 (1H, d, J=5.8 Hz), 1.82 (3H, s), 1.76–1.15 (12H, m), 1.27 (3H, s); δ_C (125 MHz, CDCl₃) 147.9, 108.3, 107.5, 83.4, 76.4, 75.9, 65.7, 46.5, 35.3, 27.3, 26.0, 22.4, 22.0, 17.4, 14.1; EI-MS-LR m/z (Int. %) 292 $(M^+, 0.9)$, 192 (100); EI-MS-HR, calcd for $C_{17}H_{24}O_4(M^+)$: 292.1675, found: 292.1674.

Acknowledgements

This work was financially supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (13680665 and 14044001) and The Akiyama Foundation.

References

- (a) Murai, A. In Pesticide Science and Biotechnology; Greenhalgh, R., Roberts, T. R., Eds.; Blackwell: London, 1987; pp 81–88. (b) Neem: A Tree for solving Global Problems; National Research Council, National Academy: Washington, DC, 1992. (c) Gill, J. S.; Lewis, C. T. Nature 1971, 232, 402. (d) Ruscoe, C. N. E. Nature 1972, 236, 159. (e) Rembold, H.; Garcia, D. W. E. J. Insect. Physiol. 1984, 30, 939. (f) Redfern, R. E.; Hayes, D. K.; Warthen, J. D.; DeMilo, A. B.; McGovern, T. P. Ann. Rev. Chronopharmacol. 1984, 1, 239. (g) Koul, O. Entomol. Exp. Appl. 1984, 36, 85. (h) Mordue (Luntz), A. J.; Blackwell, A. J. Insect Physiol. 1993, 39, 903. (i) Govindachari, T. R.; Gopalakrishnan, G. J. Indian Chem. Soc. 1998, 75, 655.
- (a) Butterworth, J. H.; Morgan, E. D. Chem. Commun. 1968,
 (b) Butterworth, J. H.; Morgan, E. D. J. Insect Physiol.

1971, *17*, 969. (c) Butterworth, J. H.; Morgan, E. D.; Percy, G. R. *J. Chem. Soc., Perkin Trans. 1* **1972**, 2445. (d) Morgan, E. D.; Butterworth, J. H. *Phytochemistry* **1973**, *12*, 391.

- (a) Kraus, W.; Bokel, M.; Klenk, A.; Pöhnl, H. *Tetrahedron Lett.* **1985**, *26*, 6435. (b) Broughton, H. B.; Ley, S. V.; Slawin, A. M. Z.; Williams, D. J.; Morgan, E. D. *J. Chem. Soc., Chem. Commun.* **1986**, 46. (c) Turner, C. J.; Tempesta, M. S.; Taylor, R. B.; Zagorski, M. G.; Termini, J. S.; Schroeder, D. R.; Nakanishi, K. *Tetrahedron* **1987**, *43*, 2789.
- Ley, S. V.; Lovell, H.; Williams, D. J. J. Chem. Soc., Chem. Commun. 1992, 1304.
- 5. (a) Ley, S. V.; Denholm, A. A.; Wood, A. Nat. Prod. Rep. 1993, 109. and references cited therein. (b) Nishikimi, Y.; Iimori, T.; Sodeoka, M.; Shibasaki, M. J. Org. Chem. 1989, 54, 3354. (c) Henry, K. J., Jr.; Fraser-Reid, B. J. Org. Chem. 1994, 59, 5128. (d) Watanabe, H.; Watanabe, T.; Mori, K. Tetrahedron 1996, 52, 13939. (e) Watanabe, H.; Watanabe, T.; Mori, K.; Kitahara, K. Tetrahedron Lett. 1997, 38, 4429. (f) Scheliger, H.; Winterfeldt, E. Chirality 1997, 9, 454. (g) Haag, D.; Chen, X.-T.; Fraser-Reid, B. Chem. Commun. 1998, 2577. (h) Ley, S. V.; Gutteridge, C. E.; Pape, A. R.; Spilling, C. D.; Zumbrunn, C. Synlett 1999, 1295. (i) Nicolaou, K. C.; Follmann, M.; Roecker, A. J.; Hunt, K. W. Angew. Chem. Int. Ed. 2002, 41, 2103. (j) Nicolaou, K. C.; Roecker, A. J.; Follmann, M.; Baati, R. Angew. Chem. Int. Ed. 2002, 41, 2107. (k) Durand-Reville, T.; Gobbi, L. B.; Gray, B. L.; Ley, S. V.; Scott, J. S. Org. Lett. 2002, 4, 3847. (1) Nicolaou, K. C.; Roecker, A. J.; Monenschein, H.; Guntupalli, P.; Follmann, M. Angew. Chem. Int. Ed. 2003, 42, 3637.
- (a) Simmonds, M. S.; Blaney, W. M.; Grossman, R. B.; Ley, S. V. J. Insect Physiol. 1995, 41, 555. (b) Nisbet, A. J.; Mordue (Luntz), A. J.; Grossman, R. G.; Jennens, L.; Ley, S. V.; Mordue, W. Arch. Insect Biochem. Physiol. 2001, 46, 78.
- 7. Yamasaki, B.; Kloche, J. A. J. Agric. Food Chem. 1987, 35, 467.
- Ley, S. V.; Anderson, J. C.; Blaney, W. M.; Jones, P. S.; Lidert, Z.; Morgan, E. D.; Robinson, N. G.; Santafianos, D.; Simmonds, M. S. J.; Toogood, P. L. *Tetrahedron* 1989, 45, 5175.
- Ley, V. S.; Santafianos, D.; Blaney, W. M.; Simmonds, M. S. J. Tetrahedron Lett. 1987, 28, 221.
- (a) Baldoni, H. A.; Enriz, R. D.; Jáuregui, E. A.; Csizmadia, I. G. J. Mol. Struct. (Theochem) 1996, 363, 167. (b) Baldoni, H. A.; Enriz, R. D.; Csizmadia, I. G. J. Mol. Struct. (Theochem) 1999, 463, 251. (c) Enriz, R. D.; Baldoni, H. A.; Zamora, M. A.; Jáuregui, E. A.; Sosa, M. E.; Tonn, C. E.; Luco, J. M.; Gordaliza, M. J. Agric. Food Chem. 2000, 48, 1384.
- (a) Kanoh, N.; Ishihara, J.; Murai, A. Synlett 1995, 895.
 (b) Kanoh, N.; Ishihara, J.; Murai, A. Synlett 1997, 737.
 (c) Ishihara, J.; Fukuzaki, T.; Murai, A. Tetrahedron Lett. 1999, 40, 1907. (d) Ishihara, J.; Yamamoto, Y.; Kanoh, N.; Murai, A. Tetrahedron Lett. 1999, 40, 4387. (e) Kanoh, N.; Ishihara, J.; Yamamoto, Y.; Murai, A. Synthesis 2000, 1878.
 (f) Yamamoto, Y.; Ishihara, J.; Kanoh, N.; Murai, A. Synthesis 2000, 1894.
- Fukuzaki, T.; Kobayashi, S.; Hibi, T.; Ikuma, Y.; Ishihara, J.; Kanoh, N.; Murai, A. Org. Lett. 2002, 4, 2877.
- (a) Ishizumi, K.; Koga, K.; Yamada, S. *Chem. Pharm. Bull.* 1968, *16*, 492. (b) Itaya, T.; Fujii, T.; Evidente, A.; Randazzo, G.; Surico, G.; Iacobellis, N. *Tetrahedron Lett.* 1986, *27*, 6349.
- 14. (a) Barton, D. H. R.; McCombie, S. W. J. Chem. Soc., Perkin

Trans. I **1975**, 1574. (b) Barton, D. H. R.; Motherwell, W. B.; Stange, A. *Synthesis* **1981**, 743.

- Barton, D. H. R.; Jang, D. O.; Jaszberenyi, J. C. *Tetrahedron* 1993, 49, 7193.
- (a) Ireland, R. E.; Muchmore, D. C.; Hengartner, U. J. Am. Chem. Soc. 1972, 94, 5098. (b) Rigby, J. H. Tetrahedron Lett. 1982, 23, 1863. (c) Trost, B. M.; Renaut, P. J. Am. Chem. Soc. 1982, 104, 6668. (d) Wender, P. A.; von Geldern, T. W.; Levine, B. H. J. Am. Chem. Soc. 1988, 110, 4858. (e) Boukouvalas, J.; Cheng, Y.-X.; Robichaud, J. J. Org. Chem. 1998, 63, 228.
- 17. Liu, H.-J.; Shang, S. Tetrahedron Lett. 1998, 39, 367.
- (a) Hutchins, B. O.; Maryanoff, B. E.; Milewski, C. A. J. Chem. Soc., Chem. Commun. 1971, 1097. (b) Hutchins, B. O.; Kandasamy, D.; Maryanoff, C. A.; Masilamani, C. D.; Maryanoff, B. E. J. Org. Chem. 1977, 42, 82.
- Hutchins, B. O.; Kandasamy, D.; Dux, F.; Maryanoff, C. A.; Rotstein, D.; Goldsmith, B.; Burgoyne, W.; Cistone, F.; Dalessandro, J.; Puglis, J. J. Org. Chem. 1978, 43, 2259.

- 20. (a) Corey, E. J.; Suggs, J. W. J. Org. Chem. 1973, 38, 3224.
 (b) Corey, E. J.; Suggs, J. W. Tetrahedron Lett. 1975, 3775.
- (a) Crabtree, R. H.; Felkin, H.; Morris, E. E. J. Organometal. Chem. 1977, 141, 205. (b) Baudry, D.; Ephritikhine, M.; Felkin, H. J. Chem. Soc., J. Chem. Commun. 1978, 694.
- (a) Breslow, R.; Baldwin, S. W. J. Am. Chem. Soc. 1970, 92, 732. (b) Baldwin, J. E.; Bhatnagar, A. K.; Harper, R. W. J. Chem. Soc., J. Chem. Commun. 1970, 659.
- 23. Deleris, G.; Dunogues, J.; Gadras, A. *Tetrahedron* **1988**, *44*, 4243.
- 24. The stereochemstry of **15** was determined by its NOE correlation.
- 25. Noller, H.; Andréu, P.; Hunger, M. Angew. Chem., Int. Ed. Engl. 1971, 10, 172.
- 26. Luche, J.-L.; Gemal, A. L. J. Am. Chem. Soc. 1979, 101, 5848.
- Anderson, J. C.; Ley, S. V.; Santafianos, D.; Sheppard, R. N. *Tetrahedron* 1991, 47, 6813.